Phoswich Alray for Sub-Fermi Energy Heavy Ion Reaction Dynamics

B. Abromeit ${ }^{1,2}$, P.Cammarata ${ }^{1,3}$, S.Yennello ${ }^{1,3}$

${ }^{1}$ Cyclotron Institute at Texas A\&M University, College Station, TX, 77840, USA ${ }^{2}$ National Superconducting Cyclotron Laboratory, East Lansing, M1, 48825
${ }^{3}$ Texas A\&M Chemistry Department, College Station, TX, 77840, USA

$E_{B}=a_{v} A-a_{s} A^{2 / 3}-a_{c} \frac{Z^{2}}{A^{1 / 3}}-a_{a} \frac{(N-Z)^{2}}{A}+\delta(A, Z)$
$E(\rho, I)=E(\rho)+\underbrace{E_{\text {sym }}(\rho) I^{2}}_{\begin{array}{c}\text { Symmetry energy not well constrained } \\ \text { at low and high densities }\end{array}}$
EoS is used to further understand astrophysical objects.

Refining the EoS Using Geant4 Simulation

Goal

Record the time it takes for a photon to be emitted and use it to get Time-of-Flight Mass Measurements

ToF Mass Calculations:
Start with the kinetic energy equation:

$$
E=\frac{1}{2} m v^{2}
$$

With a set distance and a measured time, velocity (v) may be found.

$$
m=\frac{2 E}{v^{2}}
$$

Using a known energy (E) and a measured velocity, the mass of the particle can be calculated.

Simulation Results

Alpha Particles Timing:
Alpha 10 MeV

Zr-90 I ons Timing:

Zr-90 300 MeV

Zr-90 400 MeV

Zr-90 500 MeV

Mass Measurement Calculations

Cyclotron Institute Texas A\&M University

